

### **Experiment-1.3**

: Understand supervised learning to train and devolop classifier

models.

| Student Name:                           | UID:                |
|-----------------------------------------|---------------------|
| Branch: Computer Science & Engineering  | Section/Group:      |
| Semester: 1 <sup>st</sup> Semester      | Date of Performance |
| Subject Name: Disruptive Technologies-1 |                     |
| Subject Code: 21ECP-102                 |                     |

- **1. Aim of the practical:** Understand supervised learning to train and develop classifier models.
- 2. Tool Used: Google Colab

#### 3. Basic Concept/ Command Description:

Python is a powerful general-purpose programming language. Python has simple easy-to-use syntax In the experiment performed, the basic concepts and command discussed are as follows:

Getting Data: How to import data from PyCaret repository o
 Setting up Environment: How to setup an experiment in
 PyCaret and get started with building regression models



- Create Model: How to create a model, perform cross validation and evaluate regression metrics
- Tune Model: How to automatically tune the hyper parameters of a regression model
- Plot Model: How to analyze model performance using various plots o Finalize Model: How to finalize the best model at the end of the experiment
- Predict Model: How to make prediction on new / unseen data
   Save / Load Model: How to save / load a model for future use

#### 4. Code: Install Pycaret

!pip install pycaret &> /dev/null
print ("Pycaret installed sucessfully!!")

#### **Output:**

```
Pycaret installed sucessfully!!
```

#### **Code: Loading Dataset - Loading dataset from pycaret**

from pycaret.datasets import get\_data

# No output

#### Code: Get the list of datasets available in pycaret (55)

```
# Internet connection is required
dataSets = get_data('index')
```



#### **Output:**

|   | Datasat Data Tunas  | Default Tesk                                     | Target      | Target     | #         | #          | Missing |
|---|---------------------|--------------------------------------------------|-------------|------------|-----------|------------|---------|
|   | Dataset Data Types  | Default Task                                     | Variable 1  | Variable 2 | Instances | Attributes | Values  |
| 0 | anomaly Mult        | Anomaly<br>ivariate None None<br>Detection       | 1000 10     | N          |           |            |         |
| 1 | france Multivariate | Association Rule<br>InvoiceNo Descr<br>Mining    | iption 8557 | 78 N       |           |            |         |
| 2 | germany Mult        | Association Rule<br>ivariate InvoiceNo<br>Mining | Description | 9495 8     | Ν         |            |         |
| 3 | bank Multivariate   | Classification<br>deposit None<br>(Binary)       | 45211 17    | N          |           |            |         |
| 4 | blood Multivariate  | Classification<br>Class None 748<br>(Binary)     | 5 N         |            |           |            |         |
| 5 | cancer Multivariate | Classification<br>Class None 683<br>(Binary)     | 10 N        |            |           |            |         |

#### **Code:** Get diabetes dataset

diabetesDataSet = get\_data("diabetes") # SN is 7# This is binary classification
dataset. The values in "Class variable" have two (binary) values.

#### **Output:**



| Numb | er of times<br>pregnant | Plasma glucose concentration a 2 hours<br>in an oral glucose tolerance test | Diastolic blood<br>pressure (mm Hg) | Triceps skin fold<br>thickness (mm) | 2-Hour serum<br>insulin (mu U/ml) | Body mass index (weight in kg/(height in m)^2) | Diabetes<br>pedigree<br>function | Age<br>(years) | Class<br>variable |
|------|-------------------------|-----------------------------------------------------------------------------|-------------------------------------|-------------------------------------|-----------------------------------|------------------------------------------------|----------------------------------|----------------|-------------------|
| 0    | 6                       | 148                                                                         | 72                                  | 35                                  | 0                                 | 33.6                                           | 0.627                            | 50             | 1                 |
| 1    | 1                       | 85                                                                          | 66                                  | 29                                  | 0                                 | 26.6                                           | 0.351                            | 31             | 0                 |
| 2    | 8                       | 183                                                                         | 64                                  | 0                                   | 0                                 | 23.3                                           | 0.672                            | 32             | 1                 |
| 3    | 1                       | 89                                                                          | 66                                  | 23                                  | 94                                | 28.1                                           | 0.167                            | 21             | 0                 |
| 4    | 0                       | 137                                                                         | 40                                  | 35                                  | 168                               | 43.1                                           | 2.288                            | 33             | 1                 |

### Code: Build a single model - "RandomForest"

```
from pycaret.datasets import get_data from
pycaret.classification import *
  diabetesDataSet = get_data("diabetes") s =
  setup(data=diabetesDataSet, target='Class variable', silent=True)
  rfModel = create_model('rf')
# Explore more parameters
```

#### **Output:**

|      | Accuracy | AUC    | Recall | Prec.  | F1     | Карра  | MCC    |
|------|----------|--------|--------|--------|--------|--------|--------|
| 0    | 0.7222   | 0.7963 | 0.6111 | 0.5789 | 0.5946 | 0.3836 | 0.3839 |
| 1    | 0.7963   | 0.8474 | 0.5263 | 0.8333 | 0.6452 | 0.5123 | 0.5389 |
| 2    | 0.7037   | 0.7331 | 0.3684 | 0.6364 | 0.4667 | 0.2812 | 0.3013 |
| 3    | 0.6852   | 0.7774 | 0.7368 | 0.5385 | 0.6222 | 0.3634 | 0.3766 |
| 4    | 0.7963   | 0.8744 | 0.6316 | 0.7500 | 0.6857 | 0.5367 | 0.5410 |
| 5    | 0.7778   | 0.8421 | 0.6842 | 0.6842 | 0.6842 | 0.5128 | 0.5128 |
| 6    | 0.7407   | 0.8895 | 0.5263 | 0.6667 | 0.5882 | 0.4028 | 0.4088 |
| 7    | 0.6981   | 0.7825 | 0.5000 | 0.5625 | 0.5294 | 0.3083 | 0.3095 |
| 8    | 0.8679   | 0.9024 | 0.6667 | 0.9231 | 0.7742 | 0.6843 | 0.7024 |
| 9    | 0.7547   | 0.8349 | 0.5556 | 0.6667 | 0.6061 | 0.4301 | 0.4339 |
| Mean | 0.7543   | 0.8280 | 0.5807 | 0.6840 | 0.6196 | 0.4415 | 0.4509 |
| SD   | 0.0536   | 0.0517 | 0.1020 | 0.1156 | 0.0815 | 0.1152 | 0.1172 |

#### **Code: Save the trained model**



### University Institute of Engineering

**Department of Computer Science & Engineering** 

#### **Output:**

Transformation Pipeline and Model Successfully Saved  $\operatorname{Code}$ :

#### Load the model

rfModel = load\_model('rfModelFile')

### **Output:**

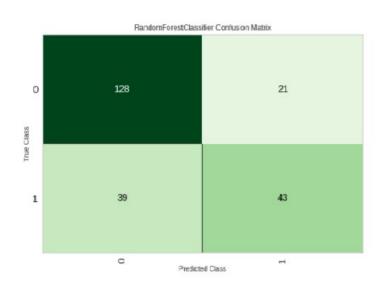
Transformation Pipeline and Model Successfully Loaded

#### Code: Save prediction results to csv

newPredictions.to\_csv("NewPredictions.csv")
# No output

#### Code: Create RandomForest or any other model

rfModel = create\_model('rf')



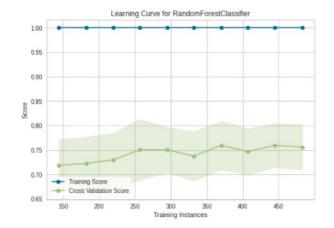

#### Accuracy AUC Recall Prec. F1 Kappa MCC 0 0.7222 0.7963 0.6111 0.5789 0.5946 0.3836 0.3839 0.7963 0.8474 0.5263 0.8333 0.6452 0.5123 0.5389 1 2 0.7037 0.7331 0.3684 0.6364 0.4667 0.2812 0.3013 3 0.6852 0.7774 0.7368 0.5385 0.6222 0.3634 0.3766 4 0.7963 0.8744 0.6316 0.7500 0.6857 0.5367 0.5410 0.7778 0.8421 0.6842 0.6842 0.6842 0.5128 0.5128 5 6 0.7407 0.8895 0.5263 0.6667 0.5882 0.4028 0.4088 0.6981 0.7825 0.5000 0.5625 0.5294 0.3083 0.3095 7 0.8679 0.9024 0.6667 0.9231 0.7742 0.6843 0.7024 8 0.7547 0.8349 0.5556 0.6667 0.6061 0.4301 0.4339 9 Mean 0.7543 0.8280 0.5807 0.6840 0.6196 0.4415 0.4509 SD 0.0536 0.0517 0.1020 0.1156 0.0815 0.1152 0.1172

#### **Code: Confusion Matrix**

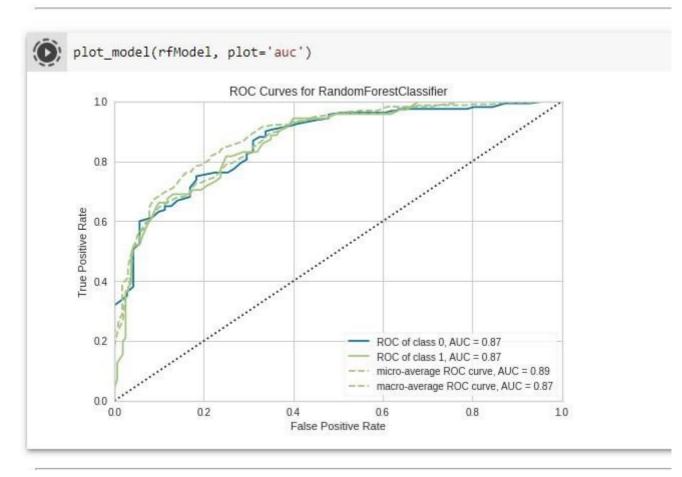
plot\_model(rfModel, plot='confusion\_matrix')

#### **Output:**



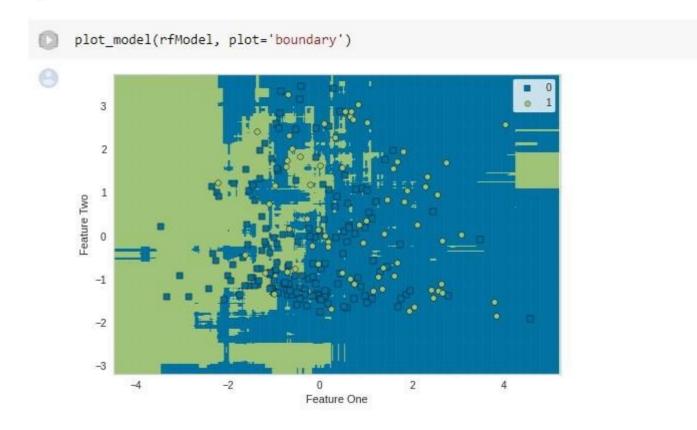

### **Code: Plot Learning Curve**

plot\_model(rfModel, plot='learning')
Output:

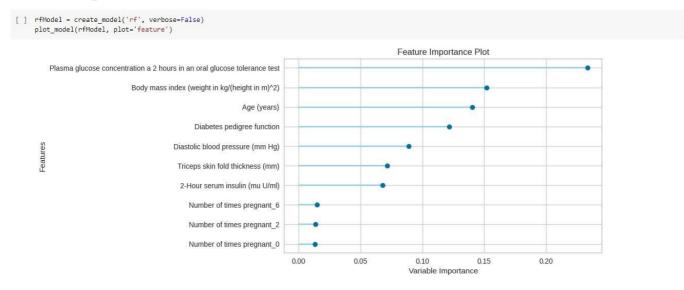



**University Institute of Engineering** 

**Department of Computer Science & Engineering** 

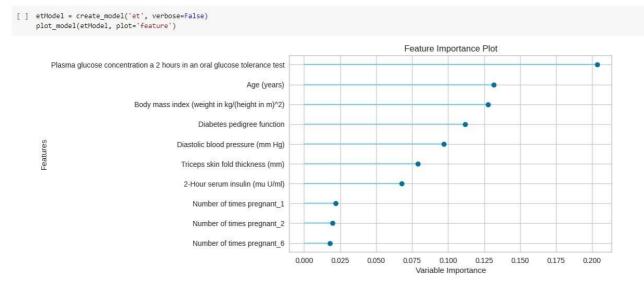



#### **AUC Curve :**

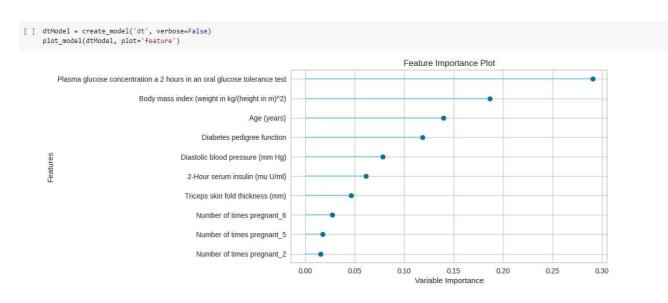





#### **Decision Boundary**




#### **Feature importance**






#### Feature importance using extra tree regression



### Feature importance using decision Tree :



italicized text---

3.9 Deploy the model on AWS Click Here



### **University Institute of Engineering**

### **Department of Computer Science & Engineering**

#### 6. Additional Creative Inputs (If Any):

Learning outcomes (What I have learnt):

- Getting Data: How to import data from PyCaret repository
- Setting up Environment: How to setup an experiment in PyCaret and get started with building regression models
- Create Model: How to create a model, perform cross validation and evaluate regression metrics
- Tune Model: How to automatically tune the hyperparameters of a regression model
- Plot Model: How to analyze model performance using various plots
- Finalize Model: How to finalize the best model at the end of the experiment
- Predict Model: How to make prediction on new / unseen data
- Save / Load Model: How to save / load a model for future use

| Sr. No. | Parameters                                                                                        | Marks Obtained        | Maximum Marks |
|---------|---------------------------------------------------------------------------------------------------|-----------------------|---------------|
| 1.      | Worksheet completion including                                                                    |                       | 10            |
|         | writinglearning                                                                                   |                       |               |
|         | objectives/Outcomes.(To besubmitted at the end of the day)                                        |                       |               |
| 2.      | Post Lab Quiz Result.                                                                             |                       | 5             |
| 3.      | Student Engagement in<br>Simulation/Demonstration/Performanc<br>e and Controls/Pre-Lab Questions. |                       | 5             |
|         | Signature of Faculty (with Date):                                                                 | Total Marks Obtained: | 20            |
|         |                                                                                                   |                       |               |

#### **Evaluation Grid (To be filled by Faculty):**

